翻訳と辞書
Words near each other
・ Discrete logarithm
・ Discrete logarithm records
・ Discrete manufacturing
・ Discrete mathematics
・ Discrete Mathematics & Theoretical Computer Science
・ Discrete Mathematics (journal)
・ Discrete measure
・ Discrete modelling
・ Discrete Morse theory
・ Discrete nanoscale transport
・ Discrete optimization
・ Discrete optimized protein energy
・ Discrete orthogonal polynomials
・ Discrete papular lichen myxedematosus
・ Discrete phase-type distribution
Discrete Poisson equation
・ Discrete q-Hermite polynomials
・ Discrete rate simulation
・ Discrete series representation
・ Discrete sine transform
・ Discrete space
・ Discrete spectrum
・ Discrete spline interpolation
・ Discrete symmetry
・ Discrete system
・ Discrete time and continuous time
・ Discrete tomography
・ Discrete transform
・ Discrete two-point space
・ Discrete Universal Denoiser


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Discrete Poisson equation : ウィキペディア英語版
Discrete Poisson equation

In mathematics, the discrete Poisson equation is the finite difference analog of the Poisson equation. In it, the discrete Laplace operator takes the place of the Laplace operator. The discrete Poisson equation is frequently used in numerical analysis as a stand-in for the continuous Poisson equation, although it is also studied in its own right as a topic in discrete mathematics.
==On a two-dimensional rectangular grid==
Using the finite difference numerical method to discretize
the 2-dimensional Poisson equation (assuming a uniform spatial discretization, \Delta x=\Delta y) on an ''m'' × ''n'' grid gives the following formula:〔.〕
:
( ^2 u )_ = \frac (u_ + u_ + u_ + u_ - 4 u_) = g_

where 2 \le i \le m-1 and 2 \le j \le n-1 . The preferred arrangement of the solution vector is to use natural ordering which, prior to removing boundary elements, would look like:
:
\vec =
\begin u_ , u_ , \ldots , u_ , u_ , u_ , \ldots , u_ , \ldots , u_
\end^T

This will result in an ''mn'' × ''mn'' linear system:
: A\vec = \vec
where
:
A =
\begin
~D & -I & ~0 & ~0 & ~0 & \ldots & ~0 \\
-I & ~D & -I & ~0 & ~0 & \ldots & ~0 \\
~0 & -I & ~D & -I & ~0 & \ldots & ~0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
~0 & \ldots & ~0 & -I & ~D & -I & ~0 \\
~0 & \ldots & \ldots & ~0 & -I & ~D & -I \\
~0 & \ldots & \ldots & \ldots & ~0 & -I & ~D
\end,

I is the ''m'' × ''m'' identity matrix, and D , also ''m'' × ''m'', is given by:
:
D =
\begin
~4 & -1 & ~0 & ~0 & ~0 & \ldots & ~0 \\
-1 & ~4 & -1 & ~0 & ~0 & \ldots & ~0 \\
~0 & -1 & ~4 & -1 & ~0 & \ldots & ~0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
~0 & \ldots & ~0 & -1 & ~4 & -1 & ~0 \\
~0 & \ldots & \ldots & ~0 & -1 & ~4 & -1 \\
~0 & \ldots & \ldots & \ldots & ~0 & -1 & ~4
\end,

〔Golub, Gene H. and C. F. Van Loan, ''Matrix Computations, 3rd Ed.'',
The Johns Hopkins University Press, Baltimore, 1996, pages 177–180.〕
and \vec is defined by
:
\vec =
-\Delta x^2\begin g_ , g_ , \ldots , g_ , g_ , g_ , \ldots , g_ , \ldots , g_
\end^T.

For each u_ equation, the columns of D correspond to a block of m components in u :
:
\begin
u_ , & u_ , & \ldots, & u_ , & u_ , & u_ , & \ldots , & u_
\end^

while the columns of I to the left and right of D each correspond to other blocks of m components within u :
:
\begin
u_ , & u_ , & \ldots, & u_ , & u_ , & u_ , & \ldots , & u_
\end^

and
:
\begin
u_ , & u_ , & \ldots, & u_ , & u_ , & u_ , & \ldots , & u_
\end^

respectively.
From the above, it can be inferred that there are n block columns of m in A . It is important to note that prescribed values of u (usually lying on the boundary) would have their corresponding elements removed from I and D . For the common case that all the nodes on the boundary are set, we have 2 \le i \le m - 1 and 2 \le j \le n - 1 , and the system would have the dimensions (''m'' − 2)(''n'' − 2) × (''m'' − 2)(''n'' − 2), where D and I would have dimensions (''m'' − 2) × (''m'' − 2).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Discrete Poisson equation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.